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A UNIFIED MODEL FOR THE EVOLUTION OF NONLINEAR WATER WAVES

1. Introduction

This paper describes a method for obtaining accurate representations of
evolving water waves under a wide variety of physical situations. The model
gives accurate results for waves almost to the breaking point, for waves in
channels of varying section, and for waves throughout the wavelength regine
from shallow water waves to essentially deep water waves. The developments
that have rade this possible include the use of a new theoretical
conservation law and associated formalism that reduces the dimensionality of
the caculations by one, while still retaining nonlinear and dispersive
effects to high order. Accurate simulations of high waves can now be
carried out roughly two orders of ragnitude longer for the same
computational investment than is possible with previous methods of
corparable accuracy (Fritts and Boris, 1979; Yarlow and Amsden, 1971; Chan
and Street, 1570). Conversely, the model is qualitatively more accurate
than models that run as fast (Chwang and Wu, 1976; Peregrine, 1966, 1067;
Madsen and Mei, 1969). Two distinct elements go into the research: a
general mathematical analysis of the physical situa*%ion, and a partly
empirical formulation of an appropriate numerical method to generate
solutions to initital/houndary value problems of interest.

Manuscript approved November 16, 1982,
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The word "order" will occur frequently in the paper. Here, and
everywhere else in the paper, except where explicitly stated otherwise. it
refers to an ordering of parameters that measure the smallness of wave
arplitude and the smallness of wave train dispersion. T™e lowest oarder
corresponds to long waves of infinitesimal amplitude that travel <hrough
water of constant depth. Specifically, at lowest order the wave has an
amplitude that is negligivkle when compared to the undisturbed depth, and any
relevant horizontal scale of the wave {wavelength or half-width) is
infinitely greater than the undisturbed depth. The waves are non-
dispersive. All disturbances can be described as a superposition of waves
of unchanging shape. The wave shapes are arbitrary.

Three bodies of theory have been developed that can describe evolving

waves that are not so small or not so long. Linear wave theory trea‘s

infinitesimal amplitude waves of arbitrary length, and a sa%isfactory
account of the basic theory is available in many places {(see, e.g. lamb
1932). Except at the long wave limit, waves are dispersive, and so only
sinusoidal waves of infinite extent can be waves of unchanging shape. long
wave theory treats waves infinitely long compared to the depth; they can
have arbitrary amplitudes., Yo wave can propagate with unchanging shage
{rates of change of shape tend to vanish in the limit 2 small amplitudes,
or, more precisely, small slope). Waves of depression can be aczommndated
by the the theory for indefinitely long times, htut waves of elavation
steepen, until at some finite time the horizontal scale at a wave front is
not particularly long cormpared to the depth. Extra features such as bores
(the water-wave analog to shock waves in gas dynamics) are added to the long
wave theory to corplete the description. Again, accounts of “he basic

theory ars widely available (see, e.g., Stoker 1957).
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A third situation can exist, in which effects of nonlinearity and
dispersion are balanced sufficently that waves can propagate for long
distances without significant change »~f form, even in the absence of
dissipation. The first person to report them in scientific annals was
Russell (1838,18L45)., He first saw a solitary wave in a canal, and being on
a horse at the time, was able to chase it along its tow path for a mile or
more. He later performed laboratory experiments and reported an accurate
relationship between the wave speed and wave arplitude. Much thecry has
gone into describing such waves, mostly published in two spurts. DPuring the
latter part of the 19th century the governing equations and some solutions
for fairly long waves that can travel both ways (Boussinesg, 1871,1872) and
one way (Korteweg and deVries, 1895) were set down. In their pioneering
numerical study of solutions 4o the Xortewez and deVries (XKdeV) Equation,
Zabusky and ¥ruskal {1965) discovered that overtaxing solitary waves emerged
with properties no different from their pre—collision ones {apart from
roundoff errors and slight phase shifts). ey suggested that solitary wave
solutions to the XdeV Equation be called "sclitons" to emphasize their
ahility to survive nonlinear collisions. Much research on solitons has
rasulted (see the review by.Zabusky, 1981, for a modern summary).

T™e Boussinesq, XdeV, and RLW (Regularized lLong Wave--an alternative tn
¥deV) descriptions each include the lowest order effects of dispersicn and
nonlinearity. Fach has waves of unchangineg shape--solitary waves and

periodic waves. Each can describe evolving waves. But the accuraciess of




each description are limited by their retaining only the lowest order
nonlinear and dispersive terms of the governing equations.
Some researchers have worked hard on the vroblem of actual solitary

on is
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waves in water (restrictions on wave arplitude are removed, dissipat
not treated, and the waves are assumed to be of unchanging shape from the
start). These theories produce results on the structure of solitary ani
periodic waves all the way to breaking, and are excellent tenchmarks for
assessing the accuracies of theories of waves that evolve *o solitary waves.
Bu*t these are special calculations, limited to waves of unchanging shape.

The attempt here is to develop a satisfactory methodology that is
demonstratably accurate for waves where disversion and nonlinearity are in
approximate balance, while still retaining the ability to treat waves where
“hey are not in balance. The analysis retains exactness for as long as is
practical. At a crucial step the choice of solving for a flow field by a
low order =xpansion has to be made, and this limits the description of
solitary waves to one order better than the Boussinesq and Korteweg-deVries
descriptions (the accuracy turns out to exceed that expected at the same
order by comparison with exact solitary wave results). Tong wave heory is
retained (though some tricks are necessary to maintain stability), and the
linear theory is retained through a high order in a dispersion para=eter,
and can be extended to even higher orders easily, if desired, The method is
straightforward and computationally efficient.

Section 2 gives the analytical development. Section 20 discusses the

pair of prognostic equations used in the work. ©One of tham ccmes from

3

recent work (Witting and McDonald, 10PR2)., These 2xact =qua-ions io not
close the system, however, and high order expansions are mde ¢o close i%

(3ection 2B)., In Section 2B <he fluii velocity at the %otsom houndary is
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chosen as one of the basic dependent variables to make the expansion far-
reaching (for linear waves the expansions converge for all wave numbers).

In Section 2¢ further transformations are made that retain high accuracy
while keeping small numbers of terms in the expansions (this is analagous %o
representing a ‘unction by Padé approximants). Section 3 ocutlines +he
numerical metnod used to generate solutions, and discusses boundary and
initial conditions. The numerical method is leapfrog, which employs
centered time and space finite differences. Tts stability properties are
discussed. Section 4 describes tests of the accuracy of 4he model by
corparing properties of solitary waves that evolve from the calculation with
theories that describe nonevolving solitary waves precisely., The model
solitary waves turn out to be suprisingly accurate almost to breaxing
amplitudes. Zection 5 describes the capahility of the model wc “reat a wile
variety of physical siutations. In (S5A) the protlem of a head-on c¢ollision
of solitary waves is examined. The solitary waves are foundi %o he near-
solitons (but not exact-solitons). In [S5SB) dispersive wave trains are
generated to demonstrate how the model handles waves of varying wavelengths.
Section 5C shows simlations of laboratory experiment~ on the propagaticn of
waves through channels of varying breadth. The simulations mirror certain
aspects of the experiments that other theories miss. Section SD shcws
examples of undular bores running through times and distances long enough to
match axperiments performed by Favre {(1235), Wnrally, Section € discusses
the key features of the model that are felt to be chiefly responsitle for

its accuracy, efficiency, and capability.




2e Analysis

A. The exact governing eguations

The thysical model used here takes the fluid to be incompressible and
invisecid, undergoing only irrctational motions. Rigid impermeahle walls
bound the sides and bottom of the fluid4, A constant-pressure surface hounds
its top. Tis physical model is that most ‘requently taker by other

res

D

archers. Figure 1 shows the geometry and the da=finition of some of the
physical riables.
Three exact relations hold for fluid motions in a channel having

treadth b and instantaneous depth h:
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where the horizontal displacement is x, the time ¢t

still water level n, the surface

velocity ug

{morizontal) and Vg

, the ele

2vation above

rcpe n', the components of surface

lrartin

a

hl N - 3 .
1Y, ard vertiecally

horizontal velocity U, and the acceleration of gravity z.

coordinate vy, positive

upwards, does not appear explicitly

averaged
e vertical

In (2,1-2.2)

{2.1)

ot

S

pae

Bquation he equation of continuity (Stoker, 1257 gives a

complete derivation). Strictly speaking, the product nb is the area above
still water level and the product uhb is the volume flux of €luid.
should be interpreted as the average elevation above still water level, and
2 as the average horizontal velocity over a cross section. For sidewalls
that are close enough together (b << h), and possibly for wide bu% gently
varying b,

n and u are sufficiently constant across the section that n can

be taken as tre

4]

urface elevation and 1 the vertically averased velocity

{
[£7
3
b
(@8]

w
(@3]

~—

.

{see Gre ™is papar so interprets nand 1, ani ignores cross~

channel variations throughout. Equation (2.2) can be derived “rom

Bernoulli's Law for irrotational motions or directly from the Fuler
Equations for inviscid but not necessarily irrotational flows {Witting and
McDonald 19823,

Fquation (2.3) is the xinematic surface rela“ion. The

second identity in (2.3) is a simple (if not transparent) identity.
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A) PLAN VIEW

B) SIDE VIEW

/
///f////////////?/////ﬁM

C) DEFINITION OF VARIABLES

still water def)th

—e Uy,

Y22 //////}////7/////////////////////’///

Tigure 1 - The geometry =¢ the corputatonal channel., “ariabls depths as

shown in (b) are no% treated in this paper.
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B. A series sclution

In terms of the £1ai1 velosity a*% +ne kottom {talten here %o lie along

F=0) uy = ¢0'(x,0,t\, (2,7) gives the Taylor series expansion
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where primes dennte partial Aifferentia“ion with respect to x.

In terms of Uy s iz turns out that:
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1 1
o =qu - — h '\'4"—'(‘“1]."'\' e +
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(2N)! 3x 2M-1

10




Zonsequently both u and e can be written as function of wu .

(2,10 and (2,11), along with (2,L4) and 72.5), ~lose the system and are an
2xact representation for irrotational two Aimensionrnal waves in arn
incompressible inviscid fluii iying atop a rigiil impermeabtle horizontil red.
If the channel walls and/or still water depth vary only gradually over =2
characteristic distance associated with the wave motion (wavelength or
solitary wave thickness, for example) we expect tha~ the set will produce
rasults that are exaczt in the limit of gradual variatsion and may he guite

accurate for sufficiently gradual variation (%reen 1328},

C. Arproximations

In the numerical work (2.4) ani (2.5) are used to advance n and 4. Ty
ore time level in a finite 4ifference apnroximation. The problem *hen
arises of how Lo evaluate the fierlds in the 3/3x tarms of (2.4} ans
tnis new time level., Using the formulation here, this involves solviag
f2.11) *or Uy, from the new values of 4g and h = ho + n., The method o
solution adopted here erploys a fast "Tridiagonal Matrix Solver” {Doris,
1375). It solves {inverts) matrices containing only on-diagonal and “he
adloining off-~iiagonal elements. Thus, the fini<e difference form of {2.11)
2an be ianverted if truncated after the term -1/2 (hzub')'. Moreover,
rereated operations with the tridiagonal solver can solve equations that

resemble (2.11) and per©acily account for the linear “erms.

11




Rather than try to retrace the reasoning tha%t led <o the farmulationg

eventually adopted, I simply state the procedure now ani later connect it o
(2.10) ani (2.11).
T™e dep-h h that appears in {2.,19) and (2.11) is expressed as
n=h_+n.  fquation 72,11) is then rewritten:
q. = u 1:( 2, 1y _L’L‘2_},2)uv‘;v + . (5,12
3 ) 2 o v 2 7 ol °r TR

A naw vel~aeity variable u is then introduced that *ransfores (2.12) o the

! -
3. =u - - M2yttt - T2yl .
s T, N P 2 2 )
+ a (2) /h‘-o lev\v +l_ (vl s \Evlv\t_ TR
m.n AT J 2 { s a C/ X coe VvZe L2
1) (2) . e PR
where a_ n and am ar2 constants that enter the linear terms of 2.17.
m, ,n
Tquation (2,10} is similarly decorposed i.e.:
~ \ ~ ~
Ged otV nage il mamay Gy
m,n o 6 o
{ i ~
+b\2) hl., ~17 " 1 ("IL'—“)L‘\ “‘V _ s gy
m,n Top ‘BTN csen R
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The coefficients a
m,n

accuracy of linear waves.

and 5. are sel2cLed %o maximize the

!

™e first few combinations are:

1st order:
(1) ) (2) _ ..
251 1/3; a5 =0 ...
(2.15)
/
1)
bo,l 0} eee
2nd order:
(1) (23
‘ 2 . T o= D ceo o
1.1 =25 ey =0
12.17)
S T TR <L R
1,1 - 1,1
3rd order:
1) {23 {3
a * /7. cSl 2 v pce. -
B0 T 2005 A 5 T RS 81,2
/'_,\.1'7\
(1) (2)
\ B 1 =/ _ N,
b1,2 2/21, 01,2 = 03
Lth order:
(1) (2) . 39
L/o; E) o= 1/ o=
a5 TEE 2, 33 %2,3
(2.18"
%(l\ / “\(3'\ -~ = H\IE) ~
"2,2 1/9;3 \42’2 = ,./9‘-"), “2,2 -
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The dispersion relation for linear waves tecomes o

o]
t

e form:

—~

order) - =

[
w
<t

15 )
{2rd order) = ==
5 2
g AN
210
2
1+ 53 k2n2
{3rd order) = 3 T
1+ 5 k%24 The kR
1+ E k2 4 o g
f1an \ 2 O B 2
Lath order; = ~f P %
i 2 — 1 lo,.‘» ;
l+9&“0+63ﬁ00 <‘

» , 3 ) Y .
These are the entries to a Pade table P(¥,N) or P/-1,N) representirn

tanh (kho), and are correct to the order of kzhoz indicated in the
parenthesis.

To second order [in dispersion) the calculations can be explained mos<

simply. Use one tridiagonal solve on (2.13):

e
]
[
[}
\n|l\)
™
&
]

thus obtaining u = 2 (x,tnew). Then substitute tnis

value of u into (2.14):

- ~ 1 ~ 1 . ~ e
a (x,t Y = u = 3=h2 g ' a3 (22 G0 z.2n)
new 15 "o ) 2

to evaluat2 Lhe new ralue of u,
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I¢ the fields ™ and q 5 2re regarded as arising “rom the dual
expansion in an amplitude parameter e¢3n_ /% ani a dispersion

— 2
parameter pzh2/ 42, where

motisn, then the procedure using (2.20) an3 2

exact equations (2.4) and (2,5) that are the following

pl/2 (governs waves in long wave theory;
if only terms in eul’/2 are retatined,
we have linear long wave theory!
eu3/2

{an approximation to linear waves!

e2ul/2 gng epd’? (the Boussinesy Fquations retain
terms only through these orders)
e3ul/2, 2,372, ¢5/2 (

the first order berond the

Soussinesq Fquitions)

The lowest order hterms that are dropped are:

Q(su7/2).’ 0(82)15/2\“, f\(€3u3/2\ {p.22°

Yoving to a 2rd and Len srder formlasion, which Involves sclving

’
2

\

«13) with 2 successing “ridiagonal mairix solvers, pushes the dispersive

errors from 2(en’?/2) £o 2(eu3’/2) and d{ep!l’/2) respec~ively.

15




Unfsrtunately, the other terms of '2.22) , i.e., 07e2 p572) any 233/
remain. Zven so, the formilation stanis at one order in € arni w Surther
1long than the 3Boussinesqg Equations. As we shall see, the num=rical resul*s
sield solitary waves 5f a practical azcuracy
(2.22).

igura 2 displays the connection hetween this theory anrd other water
wave theories. As the figure shows, each *“heory is valid nver 2 restricte?
range of nonlinearity, disversiecn, »r both. The merit of +his theory is
two-fold: first, it incorporates all of long wave theory, no matter how
nonlinear, and goes all the way tc the fourth crder in kzhoz in a long

wave expansion of linear theory. Second, this theory goes one srier beyond
the theories of Boussinesqg, Xorteweg and deVries, and other investigators
who considar nonlinear dispersive waves. Consequently, the formal ‘ard, as
will be shown, %he practical) accuracy of this theory is higher %han the
Boussinesqg type theories, and can be applied to higher waves. In suarary,
this theory can be called a "unifiesd" theory of water wave propagation in
that it incorporates long wave theory, a h&gh-order version of linear wave
theory, and can treat higher waves than any other time—dependent “heory tha*
ircludes both nonlinearities and iispersicn.

To show how well the theory deals with linear waves that are no* so
long, Figure 3 gives disversion relations from various theories. The "2nd
order" theory is shown to be fairly accurate. The "ith order" theary that
makes use of (2.12) can hardly be distinguished from exact linear *heory
over the range of kho displayed. This range %o kho=8 takes us into

essentially deep water waves. For example, the phase speed of waves having

kh0=3 is within C.0CC00N2 of the speed of waves in infinitely deep water.

16
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Figure 2 -~ Varicus water wave theories for a rectangular channel. Thesries
of evolving waves in water generally are limited by truncating “erms in +he
exact governing equations that involve jispersion or nonlinearity or both.
The convention used here is to consider the linear long wave éheory as bheing
of "zeroth" order in dispersion and nonlinearity. T™e Adispersive index !

is the power of (h2O 2/3x2) above that of long wave theory. The nonlinear

index N is the power of n/ho above that of long wave theory. Thus =0

corresponds to ul/2, ¥=0 to el, M=N=0 to eul’/2, ‘bte that for situation

[

Wwhere nonlinear and dispersive effects are nearly balanced, this theory
extends one order beyond the Boussinesq Fqua-ions (in each of M, ¥
linear dispersive waves this theory (when L4th order :cefficients from 2,17
are nsed) is three orders beyond the Boussinesq Bquations. This theory

recovers long wave theory when !M=0, unlike some versions of the Prussinesy

Fquations.
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3. The numerical method

A, The governing equations

The simples*t wave problem that the thenretical {and computational)

N

model can address is its lowest order one--long linear waves in a

rectansular chanrel. Any numerical method used for more complex wave
propagation had better do a good Job for these. As pninted out earlier,
this lowest order theory retains tarms o(eu!’/2) and drops *hose of higher

osrder. Tquations {10-11) give u = W3 i T, and so g = G o= 1, Tisations ;

f4-5) then become:

an 317
— 4+ h =2 =0 agn?
t o 3x - 80
13.*\
3q in _
EE

Systems similar to {3.1) appear in many tranches of science. For numerical
soluticn, the unstaggered leapfrog method can be extended to the problem at

hand, and can be made accurate by a suitable choice of space and %ime step.

Thus, the approach taken is to represent the fields in finite 4ifference

ves with respect to space and *ime by ~entral

[ N

form and aporoximate derivat

0]

ifferences.
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Aith subscripts denoting “he spatial positinn, and superscripts the time
level, the sirplest diffarence from of (3.1) that places toth nand 4 at the

same grid points is

nﬂ+1 nm—l m 21
n T 5 S, TR
ZAt o 24x
3.2}
Lo+l m-1 o o
*n In + n+l n=1 _ .
oAt € 20t -
oon substitution of a linear wave < exp ilut-kx) for n and q we derive:
sin?(wbt) _ . sin®{xax) 3y
= __z_"‘ (X B
(a%) &y {ax4)
Tquation (3.3) is neutrally stable for :At]<§Ax3(gho>'l/2, in that w is
real for all real k. The dispersion relation for At=Ax (gho)‘l/z is
w2 k2 = gh, {(3.4)

which is exact for arbitrary wave numbers and numerical resolution Ax. When

!At‘¢|Ax!(gho)‘1/2, we can derive the relation

2
'%;Ta— =1 - gi—z- ((ax)2 - gho(At)Z'; + o!an,/hO\“} ‘3.3
i o ‘o

™is equation contains second order numerical dispersion unless

fAtl=(gho)'1/2]Axl. It thus appears that the choice of ;At5=(gho)’1/2!Axf

20




will lixely minimize numerical dispersion for €airly long waves., For long
linear waves this cholce lies at the boundary of instability, however, ari
we must examine stability in a little detail for the more general pravlam,
To do this, let us consider the effects of nonlinearity and dispersicn
separately.

Consider dispersion first. The second order linear set of egua*ions

takes the dimensionless form:

X 1
/Q.,é\
3~ 23%, . an _
5 M- ezl 3=

Jistances are measured in units of ho and speeds in units vgh . Again

letting the field he represented as proportional t» exp [if{wt-kx)}, we zan

derive the following:

2
1+==7p
sinZ(uan) = (£)2 sin? (kax) (——1} (3.7
x 1+2P
7

where P = [lwcos(kax)!/{ax}2 > 9. Consequently, the expression within the
brackets of (3.7) never exceeds unity. For (4&t/Ax)2 <1, the RES of (2.7)
does not exceed unity, so w is real, i.2. we again have neutral stability
for all x, Ax.

After expanding (3.7), one can derive the numerical dispersion relation

(for lat|=|ax!):

1 + - k?
2 22 15 PEIEA 2 ; . tm (ALY 2 AN
wé =k 5 +3g X (Ax)%4 + higher order sarms in {Ax)¢ {2,
1+ =2 -
P
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The first term of the right hani side 5¢ (3.7) gives the exact dispersion
relation for {3.48). e lowest orider nurerical dispersisn arrors are
proportional o k*(Axfz, with a small coefficient, in contrast %o a ~hziine
?At'<{Axf, wnlcn wonld introduce an error “[kZ(AXFZT with 2 not so small
coefficient inless At is almos* Ax.

Dther formilations of the prohlerm, tesides telng of Lower corier,
sometimes :hoose a velcooity variatle in such a way %tat ‘actiderntally)
conatrains nractizal sclutions. Tor sxample, if 1g fvne same a2 g in
the low ordar “armilation) is taken t¢ be the dependent velocity variahle,
the linearized RBoussinesq equatinns ar=2 still in trhe forn of
(3.F), but wish 2 raplaced by 9 and different numeri:al 1ce’ficiancz: in
(3.6), =1/15 goes to +1/2 and 2/5 goes %o zero, Then (3.7 heasres

sin? (wat) = {%%}2 sinllzax) {1 - % T} .0
Here the factor within the brackets approaches - as (Ax)2+7, and so
sin?{wAt) <0 and w can have an imaginary part, presuamably unstable., ™nly i°f
At goes tc zero At least as fast as fax)3 is s*tadili*y assured. ™is maxes
numerical work very expensive for equations having more dispersicn in forms
like the first of (3.6) than in forms like the second, because more time

steps rmust be taken. The ¥orwewe

ispersion, and typical finite 4

[¢H

Ax=0.25 renuire time steps the ori

fuller 4iscussion)., The Regularized

has its dispersion in a form akin to

g~deVries

Tv

Bqua®tlon has expensive

ong Wave Tquation, cn the other hani,

numerical werx

can te dcone at At=Ax (e.g. Zona, et al 1920).




The inclusion of some nonlinear terms %o 2

[9AN

.~} for simple waves changes
mhe stablility analysis enly by 2 lit<le when the waves are long

can approximate the nonlinear terms as the proiuct of a slcwly

ani a potentially uns*adla rapidly varying field, The slowly varying fie714
s irncorporzted in the long wavelength wave speed, resuliing in
2
2 L2 P
cAt N 10
sin2{wat) = (5==) sin? waz | . } f2.10)
Ax 5 B
- + = =
2
where ¢ = ’gh)l’z * 1 ineludes ncnlinear contrivutions and can exceed unityry.

™,

Thus (cAt/Ax)z is a factor that can exceed unity when At=A4x. YNote, however

that ¢

ol
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by a number less than unity, the tound being dependent on (ax)2, Tor
s v

axample, for Ax=1/%, <yrical of the compntatinns ru:

nevar 2xceeds 0.2, TYence, ¢ can exceed unity by a comfortahle marzin

without necessarily giving instabilities
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is not corplete, however. Cormputational instavili“ty ha
cases involving very high waves. The conditions under whi~h instakili~y
occurs will be identified later.

B. Boundary “onditions

In all calculations run to date, rigii impermeable side and end walls
Lo possess valid soluticns we
ere alorng a closed boundary. Here

the boundary conditicns a*t the lower boundary zre specified Yy the form of

{2.9). The top boundary condition is specified by (2.5) whick says,
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_—

in essance, that the

'
'3

essur2 13 cons*tant there. At %he 2nis the physics
Jemands that the normal corponen*s of fluid velcecity mateh the wall velocity
' J J

a= 2ach point. This can be “ransformed to corditisns on nand g, deranded

by this formulation, Taking walls to be vertical an? moving horizentally

'

u (wall,y,%) = "(t) f3,11)
where U(%) is the wall speed,
We further need a condition on n at the wall.,. This is mos® easily
derived in a Iagrangian formulation. One equation of motion is:
azx(a,b,u> aX + ,GZV(a o) t) + ~,3v + 1 Bo(a b t) = 0 f2 123
oy e vl e v e 222
3t da 3t 5 % p 3a b

where a and b are the initial coordinates of “he fluid particle now

[
-

f4,v). Let us evalunate the terms for the “luii surface particle at *the

W

wall. When the wall is nonaccelerating the firs*t %erm vanishes. %“hen the
f1uid surface is horizontal at the initial time, the third term vanishes.
Apart from the possibility that “he fluid at the surface accelarates al

axactly -z, this demands +hat 9y/3a=", which is the same as:

L 2,13}
Ix R
We know that ug (wall, %) = U, Using (3.11)
q_ =U f3,14)
2

at the wall, so long as it 1s nonaccelerating. We 10 rot consider

accelerating end walls in this report.
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ralculations are started bHr specifiving the wall zeometry and

x,% = 0, 1. 'x,% = ) throughout “he region., From “hese one

=
)
o]
[*n
v
o
+

calaulates u from [2.12) and 2 “rom (2.14%) at t=0. Values of

(2417 and 72,11) at t=+1/2) At are found. The fields at £=-"1/2'At ani
fluxes at <=+{1/2) A% are used to advance the calceulation Lo +={3/2)At.

luxes A% +=(3/2)at ani Tislds at t£=1/2)A% are used to advance o £=/5/20 A

dt+-dt, nsing the fields at £=/"+1/2)At as initial condi*icns. The *ine
Zevals on the return towari £=0 are $SMAYL) and Tie midwas terween She

~

t=" i3 reached.

]

advancing-time levels unt?
There appears t0 be some alvantage in the procedure of initially meving
to two adjacent time levels symmetrically. 2ther proceiures such as a
forward or backward whole time step differencz gave some alternating griAd
point noise which, o7 course, “he pure leapfrog method dces not suppress as

time advances. Trapezoidal ccorrections £o the leapfrog method suppress this

Q.
[o%
4]
(2]
o]
1]
©
i
]

oscillazion, btut also damp waves a little an the accuracy of

solitary waves. I have seen ns eviience of statistically significant

i

alternating zrid point noisze in “h2 “he fislis when the calculasions are

started symmetrically, as described abnve,
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4, Tests of the Accuracy and Sta

bility ¢f <he Calculations

A series of runs were rede i

initial conditinns as fallows:

n{x,t=0)

Q

‘T"'qe

o

L2or

e
=

(=

.~
v (e

owest ordar) analysis o

Nk
vitt

The com ational hox contained 1

imately L=230 and time a

wave

Various diagnestics were per

1

wave, The cation and value of

—~g
PR e

speed was determined. Various ia

such as its mass, 2fm ndx, we

crest

from the crest to the right side

2

<

o]

es i

e

uantit n {2.4Y and (

C

in the calculations,

b

frorm (2.4) the

3t tnis ccmes

nver the corputational btox:

R

X4
ngh?nb)dx +
left

*-

19

step sizes were

urhante was present in

soon outran

abola throiugh the nighest elevation and

5}, mass and veloci*

crom mlsipiying (2.4)

7 ~hannel of

34}

L RVES

Zon uniform Lrea: with

na

na

e .,

be)
10

a ant a.

i

atween

£ a solitary wave found in Ilarb (19

s

PNeY

Lo gr

dvanrei to approximately 1uR,

formed

the crest ting a

71

segral propertias

re determined bty

+ i
PN

of e tCXe.

conserved guantity is “he 4otal area atcve

"
i

ty b a

4 integrating
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3ecause 4=l at the 2nd walls, x ani x

right 1efe >nly the first term of

ntegration over tinme gives
X .
right ~ o
£ 8% (nb)ix = Const Talh)
left
The integral of (L.4) is monitored at each step of the caleculation, and is

found to be constant (to the four significant figures printed out in every

zaleulation). ¥From (2.5) the conserved quantity is an integral of ig

iem,
3 Xrighs 1l,3n 1,9n P
A Sedx * len -3 - len -SRI =0 fls)

left right left

where in (4,5) we have dropped terms involving q_ and n' at the ends,
<o

because they vanish there. Te integral over *ime produces:

X_ . n_, an, .
i TETI N P ONRUPRE R e «£-: AT JEAE ST FN
PO = %' right lefy 2 * It

+ Const
Tquation (4,6) says *ha* at each “ime the total "velocity” in “he box
f;s dx varies only by fluxes entering from “he end walls {the right hand
sije of (4.6)). Before distrubances reach the walls we find that qu 3x
is conserved to four significant figures., After n?0 a4 an end wall, we €ind
the differences between the %wo sides of (4.£) are small and can te
explained as roundoff and truncation errors.

Figure 4 shows the wave speed, figure 5 the tntal solitary wave mass,
and figure 6 the total energy of the solitary wave. The square: r present
runs with second order dispersion (see 2.18); “he “riangles reprevent “hird
order and fourth order 1ispersion runs {2.17 and 2.12). Because ‘hese are

solitary waves, where nconlinear affects balance dispersive osnes, the formal

accuracy of the analysis on which the computations are hasei is limited %>

L
2
3]
o
'
)
3
[b]

second order, however, and improving the dispersive contritu*t

should not effect the formal accuracy of the solutions. From
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"seconid

is clear that the numerical calculatinns are accurate - more so than
order"” sclitary wave theories. The second order dispersion gives the most
accurate resul%s, likely a fortuitous result, and one which I dc not
ermphasiza, llo matter how the dispersion is treated, the solitary waves are
azcurate., The highest run using second order dispersion shown in the
figures occurs when ia {(k,1) ai=o.5, giving a wave that asymptotically has
an amplitude of 0.5853. When ai=0.€ was attempted, the calculations

became unstable. Using fourth order dlspersion, ai=0.€ leads 0 a wave
having an amplitude of 0.72L. The run for a=2.7 became unstahle. o
atterpts at finding out where runs with third order dlspersion became
unstahle were made.

The resolution Ax=At=1/8 is sufficiant to make truncation errors small.
Results at resnlution Ax=At=1/L shew slight departures Trom these displayed.
Runs at Ax=At=1/16 are unstahle a* lower ampli<udes %han at Ax=4t=1/8, This
result may be caused by roundoff error, and might not hold for calculations

fsingle precision).

carried out with more precision than the 6-7 places used
Where results of runs using Ax=At=1/8 and Ax=At=1/1€ can bhe corpared, they
agree within roundof? errors. This is in accordance with the linear

anzlysis leading to Tq. (3.2), for (1/36) k* (Ax)2 is very small, 2ven if
the estimate >¢ appropriate values %5 use for k“ are not so small. TIf we

assume %hat “runcation 2rrors ire progorticnal to "axV2, tne zmall

differeances observed between a run with Ax=1/%1 and Ax=1/9 indi-ate tha

e d

truncation 4ifferences between runs with Ax=1/8 and Ax=1/1% shoull he

masked by roundoff error, as observed.
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5. GExamples

While it is not difficult to run numernus examples of water waves that
have different boundary geonmetries and initial conditions, this papsr limits
discussisn to four different types that span a variety of conditions, In
subsection A an exarple of solitary waves colliding head-on is shown,
In B examples of essentially dispersive wave trains ars shoun. In C
exarples of solitary waves propgating in a converging/liverging chann=l are
shown. 1In D an example of long waves of depression coupled with an undular
bore is shown. These exarples are designed to illustrate the capability o¢f
the numerical calculations to treat waves Tor which dispersive effectis are
larger than, less than, and comparable to nonlinear effects.

A. Solitary Wave Collision

The past twenty years has witnessed a surge of interest in whether the

solitary waves described by various model equations are solitons, Hdere I
define solitons as solitary waves tha* emerge from a collision with each
another having the identical structure that they had prior to colliding fan
individual soliton may be retarded or advanced during tlhe collision)., The
two first order theories that have been used to s-udy cciliding solitary

N

waves in water arz the Horteweg-deVries equation

3  9n 2 3n t 33n PR
_—t —— == _— =N .2
% T T3 T T RES

Tre formal accuracies »¢ 7%..1) and (5.2) are the same. The first <wo terms

ot
)
T
[®]
—
[\l
=
w
~
~
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.
2
+
I
—~
m
=
[
~
[ 8]
o

are Cleul/2), the next is 2(e2ul’/2) and the las
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the solution I35 3/3t = - 3/3x, so that in the 1last term of 15,10 -3/3¥ mnr

e substituted for 3/3x to give (5.2) withen® modifying *he “srmal accuracy.

et the solitary waves of [5.1) ars solitons !Zakisky and ¥rusial 1737
while those of (5.2) are not quites solitons < Bona, et al. 10R2, lantarslli

1978, Lewis and Tion 19790,

Here I describe calculations designed <o see whether solitary waves ia

the higher order theory are solitons. The s%ill water derth ani the hreadth

of the channel are constant. The ini%tial form of 2ach wave i3 rhosen *5

have a waveform that is solitary-wave-like, i,e.

2

“n
]
-

n = a sech®al{x-x ) f

max

Wwhere Xmax marks tha initial location of a wave crest, and a and a zre

adjustable narameters, as in Eq. (4.1}, After some experimentation, I have
found that the choice of a and a that produces acceptably small disturhances

other than a propagating solitary wave differs a little from that of (4,2),

s
0]
ct
D
o
)
3

Here a solitary wave is chosen having one »f “he arplitudes 11
Table S5 Longuet-Hizgins and Fenton [1274), “or whizh selected, essentially

axact, solitary wave properties are ¥nown. Amcng these are the speei 7,

L] o
1
3 = 7 bl -
the mass fn dx, and the potential energy 5 an dx. These latter *wo are
- ad

sufficient to determine a and a for the particular solitary wave in nmind,
Tre initial value of q  is Tound by setting 3/3t = *F 3/3x in (2.8' 'the «
sign for an intended right-going wave and the + sign for left—_goine', and

solving the resulting quadratic equation for Qg = 4
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igure 7 shows plots of the elavation abov
Alsturbance which started with a pair of solitary-like waves., The wave
inisially at x = 50 approaches an amplitude of 0,127C prisr 4o the
collision., ™e wave initially at x = 150 approaches an amplitude of 2,284
before the collision. During the collision the elevation reazhes 2.£35),
somawhat more than the sum of the amplitudes of the colliding waves., 3Ry the
end of *he axperiment the rightward wave had reached an amplitude of 02,1242
{and was still rising slowly), and the leftward wave had reached an
amplitude of 0.3851 (and was also still rising).

Figure 8 takes the same data as used to plot Pig. 7, =xpandis vertical
scales by a factor of 3 and clips of? the wave crests, Al*hough some
oscillatory wave trains are visible that have their orizin a% the initial
conditinn, the major oscillatory wave trains that fill the region
between the solitary waves at % > 50 emanate from the collision. These
waves have some energy that the solitary waves are leaving hehind.
Consequently, the solitary waves cannot be solitons (strictly speaking, no
more than one of them can be).

The question remains whether the existence of the oscillatory wave
trains that show the solitary waves o be not exactly solitons can be an
artifact of the f€inite difference numerical treatment. One potential scurce
of =2rror could bte what numerical analysists refer £o as trancation error,
which tends tc he proportional to (Ax)2 for small Ax. T2 ruls sut this
possibility, the calculations were run with Ax = At = 1’4, i,a, a*% one half
the resolution of Figs. 7-S. The oscillations between “he sclitary waves

had about the same amplitudes and phases at both numerical resolutions.

34




R T T VO

S/ lE Y FRY e Uoinded i depdo pUOLOE W TE UEd ed b SHG T IO kel

ol ol fE S SHAdT Ui e P RALSIL Dby ey, gt pu g .).-:_¢__;
cld¥ oA oy o Sopnyt TT:.... 3L sUo=-puay .L::_.:T:J TIATIM x..:ﬁ.:,,_ﬁ Ory

JOU pehep deniem LGS a0 UG mas e oy go Supdoerp oungy—s ot~

JONVISIA SSA'INOISNINIA
091 02t 08 oy

L

-3

=
i

1?‘%

\

S

@3

NOISTTIOO HAVM AYUVLIIOS

M

R oy R

AMIMNNNY

T
ot 0

08
ANIL SSTTNOISNIANIA

—
oet




1
240

.
%
%
7

m//,

Z,
=
J Hfg >
— Y <
é s}«(fﬂj\o 7
s ga
& l!ll ) =
{ N ((/ n
> \H / ) 2
2 il S
= \_35 -
=
@)
N
i ©

AN

oct 08 Olf 0
z ANIL SSITNOISNINIA




For example, the first few minima and maxima %2 the right -7 <he larger

solitary wave at the top of ("8 nave the val
=2.0CRR) 40,703, 20,NNLT7. 40, N0LT,  The zcarser resoluitisn run gives the

corresponiing valies of =7,03%7, +2.7127, -2.007%, 40,7033, -

ot
ct
o2l
D
K
i
0O
ot
o]
'3
-
1)
1]
0
t
14
Qs

intense than the finer res»lution ones, they are no
under the hypothesis that the existence of the oscillatory “rain is due to
truncation error (the reason the oscilla“ions are a little stronger is
likely due to the fact that with the same initial conditions the solitary

wavaes are a little higher bhefore collision fo

o P EARN
Ax = At = 1/4, than for

>3

0
~r

Ax = At = 1/¢
To see whether the trea“ment of dispersive terms wouli influence the

propagation, 2 run at Ax = At = 1/C with fourth ord 'mnt the

- .

second orier for Figs. 7-8) was made. Again, the oscilla*ory wave train is
oresent, with almost exactly the same arplituies and nearly the same
location of maxima and minima as in Figs. 7-8.

Finally, a test was made %o see whether any diffusive artifacts were
introduced intc the cormputer progranm. igure 2 shows the results of a
calcilation run to time o°f
of 1600 %ime steps. (As for

scale »f the figure the calculations a

if the calculations were perfectly reversible. In fact, these “wo Jdiffer v

3(1C~") +aroughout “he computational region. We ascribe “hese small

ct
fus

differences to roundoff error in running through 1600 time steps (300
forward and 800 bvack) with singla-grecision aceuracy (£-7 slinificant

figures). The phases of the crests ar: remariably will
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Figure 7 - IZxpanded view of the same solitary wave collisicn, but with “inme

A
{8
l
AN

reversal and clipping at 0.0k, The time scale is the same as for Tigs. 7-%,

so tha*t the time interval between curves is K.2%,
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example, the crest of the leftward propagating wave, which started a= x =
1574000 returned to x= 157.015, after *h2 round trip travel distance of 234,
Je may conclude “hat these colliding solitary waves are almost solitons, bhut
not aquite.

2. Dispersive Wave Trains

The wave model derived here is designed to produce solutinns for linear
and not so linear wave trains tha®t are not necessarily long. 7o see how

Taithfully the model represents such wave trains, consijer the distaurtance

fote

produced from the following initial condition:

0.08 [x-25) sech? 7.08/x=25)

a
]

b oo

The nondimensionalization is again the sbvious ho =g =1, Tis tro
o7 disturbance resembles that of an impulse distributed over a spatial
region of the order of unity. Figure 12 shows the results of “he
calculations running for a non-iimensional time »¢ 100 and time reversed for

the following time interval of 100 (1600 time steps in alll. The result is

o]

a dispersive wave train. The longer waves travel faster than the shorter

)

ones, and so these longer waves appear at the “ront »f “he train, As in all
of the figures in this paper, the %time and space scales are zet so that a
feature of a disturbance {a crest, for example) lires up with a slope of
axactly unity if it travels with a speed of unity {in dimensionless uni%s:

unity corresponds to the long wavelength limit cf linear wave propagation,
24 Prop

Vgho in iimensional units). As Tig. 10 shows, the longer waves at <he

front of the train have speeds slightly less than unity, while the shorter
waves travel slower. Waves near the rear of the train are very shor+,

- LIRS N

length seales consiierahly less than the depsth, [The best measure

)
XN

havin
a length scale 2f a periodis wave is its inverse wave number 27}, rather
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Tigure 10 -~ Waves from an impulse-like initial waveform, with *time reversal,
The time scale is the same as the space scale. so “hat the %ime iptarval
between profiles is .25 and speeds of *1 would show up along lines sriented
at *45°, Time advances %o t=170, and receeds £3 £=202, The alavation
scale is 72.05 per interval: the initial waveform has a maxirum o7 a 1it<le

less than 0.05. Te zalculations are run with second order iisversion and

Ax=at=1/8,




than its wavelength A, This makes the measurs of the smallness of <he wave
scale equal to kho, a number that is unity when the waves are intermediate
between being shallow wat=r waves and leep watesr waves. In Fig, 12 *he
waves near the hack of the forward goling %rain are essentially deep water
waves,) Thus, the wave model sees essentially deep water waves, =ven though
its design involves an expansion in a parameter tha* wvanishes only {a the
1imit of shallow water waves. How well the model treats deep water waves i3
still a matter of conjlecture, becauss sufficient testing has not yet hean

performed., It is comforting, however, that we see the deep water waves, and
the dispersion relations shown in Fig. 3 say that waves should be pretiy
well represented out to kh  as large as £ or more {these are reall; de=p
watsr waves).

As in the zalculations that produce Fig.
apart from round-off error. T™e topmost profile i3 fdentical ¢t the Inivial
Iowermost profile to within a few parts in 125, T™e maximum elavation of
the +opmost profile occurs at the locatisn x= 25,9A%, where it was initially
at 25,965, thus indizating very good phase stability.

In order to make more quantitative statements ahou® how well the model

handles dispersive wave trains, salculations were perfsrrmed with *he

following initial profile:

\ ,
n = 2.5 seche 7.2/x=12.5) cos 2(x=12.%" ( :

N

N

and the initial surface velocity set from using (2.5), with ¥ being the

»

nticipated wave speed of a periodic wave having wave number 2.7, The

resiulting disturbance is almos*t entirely ricght-going, as exy=cted. Figure

11 shows 33 profiles, equally svaced in time, running from bt =2 o0 5 = °0
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igare 11 -~ Dispersive wave packet. T™e “ime scale I3 the 3arme as “he snacs
scal2, so that the time interval hetween profiles is 1.3425. The elavatizn

scal2 is 0,15 per interval; the intital waveform “as a maximum of ©.15.

Talsulations are run with fourth order dispersion and Ax=&t=1/9,
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3oth an individual wave crest and +he entire disturbance travel at speeds
less than unity. The crests travel faster tha' tre group, entering a*t the
left and disappearing at the right. This is a graphic demonstration tha+
for water waves the phases travel faster than the group.

The computational data that make up Fig. 11 were examined in some
detail. To round-off error, the largest wave crest travels at the linear
speed of waves of wave number 2,0. Again to round-off error, the entire
group travels at the group speed of linear waves. T™is latter result is not
surprising, even though the wave train is so short that the notion of a
group speed (in the linear theory) is a little fuzzy. The former res:ult,
that the phase of the largest wave traveled at the linear phase speed,
suprises me a little. Because the waves near the center »f the train are
not small-amplitude, one might expect that they would movae with speecds a
little larger than the predictions of linear theory. For example, the crest
of a nonlinear periodic wave described by Stokes wave thenry should travel
approximately 2 percent faster than linear waves of the same wavelength for
the example shown. The precision of the calculations of crast speed is
about 9.5 percent. Why the largest crest travels closer to what linear
theory predicts, rather than what nonlinear theory predizts, iz an
unanswered question at this time. It may have to do with the shortness »f
the train, so that the largest crest is intimately connected with small
amplitude waves; it may have to do with defining a zero veloni*y, which
d

LY P
oiers

1 the initial/boundary protlems solved hers from “he steady-state

S

[WN

provlam solved by 3tokes and others.




-

As a test of cne aspect of the model, the data used in generating
Tig. 1. were sxamined a little more carefully to see whether one feature o7
high, not-so-long waves that is obvious to any obcerver of waves ~- their
sharp—crestedness -~ becomes more apparent as the wave arplitude increases.
The waves of Fig., 11 are more nearly deep-water waves than shallow-water
waves, and their slope is the hetter measure of nonlinearity than thelir
amplitude-depth ratio. Here the maximum slope is about 0.3, and so %he
waves are not "small amplitude”; they are also not "near-breaxing”, which
would call for meximum wave slopes of the order of 0.6 (tan 32°). Figurs
12 is a blowup of the data from the uppermost profile of Fig. 11 {at the
-5p) and of the central profile {(at t = 25)., When large (the center of the
figure), the waves are somewhat sharp-crested. Trom this we can conclule
that the wave model reproduces the sharp-crested feature nossessa2d by hnigh
water waves, even when the wavelength is not so long., Whether all features
57 high, not-so=long waves are reproduced from this Tong-wave nmoiel is nnot
vet possible to say.

C. Waves in channels of variable treadth

T™e wave model incorporates a variahle channel breadth, under the
circumstance that a measure of the length over which the breadth changes
substantially is much greater than the horizontal scale of the wave, 1A
computational channel was set up to replicate conditions of experiments by
Charg, et al. 71979). The channel is 10 times wider or narrower a% one end
from the other. We connect the converging/divergzing parts of the zhannel
with parallel wall geometry, so that a wave can travel a long way btefcre
ancountering “he variable part of the channel. Tor the diverging ~use,

parallel side walls occupy the region hetwean x = 7 and x = 127 The
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w2lls then diverge from x = 120 t5 the end of the channel, which is at x =
2nC l3ee the top of FTig. 15). e experiments had a shorter entrance
sectizn, and 1id not *erminate in 3 rigii wall., Sefore the wave hounces »e7
the ent wall, however, the corputations should mirrcr the experiments,

They Jo. Tigures 13 displays the pdropagation of a wave that is
designed to be a solitary wave initially, as in earlier displays. The
initial conditions are set to be the same as those of the leftwari-

5

ropagating wave of Fig. 10 f(excert that it is right—oing’, i.e.

"3

, it an

amplitude *hat stayed constant near 2.386 zt the wave approached the

)

artrance to the iiverging part o7 the channel a% x = 12%. The wave

K4
]
o]
O
3
o
T
w0
v

s3ignificant reflected wave as it first passes Shrcugn the

iiverging sec~ion of the chanrel. It is here that reflecticns zre expected

Lo te the largesit, for the nondimensional lenath associated with changes of

channel breadth are the largest near the entrance section. The solitary
wave gats smaller, and acquires an oscillatory tail. It also slows down
ig, 1k, which ases the same data as for

ig. 13, nut views the scene fronm the coordinate system which moves with

the speed of the long wavelergth limis of ™e wave

travels considerably fastar than this limiting speed at first, and then

slows down as 1% becomes weaker, still exceeding vgh . The provagaticn

P

N

speed o€ the wave crest lies clnse to that 2f a solitarm: wave »f the same

igure 15 expands the viaw over the seztion in whizh Chang, e+

®
'—l
.

u
™
te!

eriments were performed. They used wave prores %o give 3 time

nistory o7 elevation at one 2% several) =selacted locatisns. Ther alisn

compare their observations with a Mortawers—ie’

N

&~




T T T 1

0 40 80 léO 160 200
DIMENSIONLESS DISTANCE

4

b
7
S
e
1]
foy
w
[}
=
[
(34
®
4
5
o
<
(1]

rropagating to and through a diveraging channel

’

(see top o 5 for the geometry). Again, the fime scala is the same

w
)
o

B
=
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b

as *“he space scale, so that the time interval
The elevation scale is 0,05 per interval; the initial waveform has a2 maximunm

P

£ Tede falcalations are run with szecnnd order iispersion and Ax=At=l/%,
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Figure 14 - Solitary wave propagating to and through a iiversing ~hanne.

The data are the same as for {ig. 12, but are viewed from the toaril-at

system moving to the right with a dimensionless speed 2% unity,

coordinate gystems being aligned at t=0.
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Figure 1S - Solitary wave propagating through a diverging shannel, The da%a
are the same as for Tigs. 13-1L, and clearly show the oscillatorry “ail $has
trails the laaj wave. This tail is present in laboratory exrerinents, tut

no*, in a “crtaweg-ieVries theory.
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McDonald (1982) compare their experiments with thesries. Tewr i* suffice %o
say that the theory given here reproduces the essential Teatures of the
2xperiment, such as <he os illatory *ail rehind ¢he wavre :ra2st generated =23
the wave passes threough the diverging section, whils the Yorteweg-deVries
“heory does not.

Figure 16 replicates conditions of another 2xperiment of Chang, et =2l.
(1979), this exarple showing waves in a cenvarging channel. Beravse the

- ’ -
- - e ~
n this [:ernverging

[

physical still-water-depth harpened to ke different
channel) experiment frem the previcus (diverging charnel) cne, the
p > s

ne channel =n%rance sectinn

dimensionless geometry is different. Here ¢
extends to x = 1L0, and the 10-fold converging part occupies only the region
hetween x = 140 and x = 200, The solitary wave ga*s higcer

fasterlas it propagates in <he converzing sectisn. Trarmatlz refle:zteid wavas

and oscillatory wave trains following the major 3distrubance a:e arsent from

"y

this scene. There is a long positive tail to the wave, however, which is
consistent with the experiments, but inconsistent with Yorteweg-3deVries
theory {(see Witting ard McDonald, 19%2).

Two asymptotic theoriss speak to the behavior £ waves in channels =°
gradually varying breadth: the first, derived by Treen (1838, predists
that the amplitude of <he disturbance a is related to %
by :

a « b-1/2 P
The second, discussed in detail by Miles (1979, who independently derives
earlier resul%ts, gives:

a « 1=2/3
The first resalt assumes that “he waves can he dessrided by linear long wave

toeory, and that the iisturbance iz very narrow cormparei o the jistance
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Tigure 16 - Solitary wave propagating through a converging channel.

100

wave was launched at % 0, x = 25, with an amplitude of 0.2.

scale is 0,15 per interval.

=

Ax = At = 1/R.
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The alevation

Calculations are run with second dispersion and




over which :he channel varies substantially. The second result assumes that
the waves can be described by a Yorteweg-deVries theory, and that +the
channel changes bhreadth sc gradaally tha* not only is there room for the
wave itself, bu%t also for the wave t¢ continually reform itself so as %o

remain a solitary wave. The wave propagations shown in Figures 123-14

also fronm other geometries and initial cenditicns, give results that

(]

generally lie between the extremes of Iq. 5.5 - S.A, and cast doubts as to
wnether in practice the requirements of the asyrnptotic thecries apply.
3riafly, it appears that extremely long czhannels /L = hundreds) may be
required to allow sufficiently gradual changes in breadth. For cases run in
moderate-length-channels (L = 200) there is not enough room. Moracver, in
situations wh2re a channel has a converging/Jiverging section with entrance
and exit sections Identical, we find irreversitle behavior, i.e., the

emerging waves ar

]
:%)
-
f._‘
(]
"1
£
oy
)
D

they leave the variable secticn than they
ware when they 2ntered. The calculations show that this is principally the
result the of reflected waves that escape to infinity whenever a wave passes
through a section of variable breadth. 3oth asymptotic thecries incorrectiy
predict reversibility, at least in the sense that the arplitude of the
emerging wave should te identical to that of the entering wave.

D. Undular bores and long waves

Computational experiments were run to see whether it woull te possidle
to simlate the laboratory experiments of Favre (1935), which, even “oday,
form the most complete set. One aspect was not mecdelled -- the marner by
which the bores were generted. Favre pushed water into one end of his box;
here a "dam" is broken, the water filling the zompu*aticnal region teing

initially s¢ill., PFigure 17 sirmlates cne of Tavre's sxperiments
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The time scale is the same as the space scale, so

tetween profiles is 1
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igure 17 ~ "lmdular bore and long wave jis%
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fsee his Fiz., 42). The water at the left has a dimensiocnless height of C.,.L.

T™wo waves are launched from the initial condition: a long wave that travels
o the 12ft, unsteepens, and reflects from the wall at x = 0., This wave
could just as well be described by long wave theory as by anything more
sophisticateds. The initially long wave travelling to the right, however,
steepens for a2 while, and then starts to generate a wavetrain, The entire
structure to the right of x = 141 is a bore that soon becomes undular. bu+
never reaches a steady state. T™e maximum elevation of the undulations
becomes about 0.4 at late times.

The experiments of Favre show the undulations to form at much earlier
times, so calculations were performed with an initially sharper gradient of
2levation., Figure 18 shows the results. The unsteepening wave of
depression travelling to the left is now accorpanied by an oscillatory wave
train, generated, presumably, by the initial sharp gradient. The undular
bore is gqualitatively the same, but the undulations begin to form earlier.
Indeed, the number of waves in the train at any time closely remsembles the
number in the wave probe records shown by Favre at locations comparadle in
space=time.

One interesting feature of the calculations, also seen hy Witting
(1975}, is that the water depth at the location of the initial disturbance
rapidly goes to the value given by long wave theory, until reflections from
end walls intrude. For the conditions of Figure 17 this is no* surprisine,

for the wave is at least initially long. For the conditinns of Figure 1%,
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Tigure 18 - mdular bore and other Aisturbances from £he breakine -9 a

8
g

sharp-faced dam. The time scala i3 the 3ame as the space scale, so *ha* the
time interval tetween profiles is 11,5625 The elevation seals is 7,2 rer
interval; the initial =levation at the 1af%t is 0.4, The calsulations are

run with fourth order dispersion and Ax = Ac = 0,212F%,
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assunptions 2f the the long wave theory are vinlated even initially, and s»o
the marner by which the system adlusts to the long wave results is an
intaresting provdlem. I nave no idea how Lo go abmt deriving “his observeld
result from analysis,

To see the undular bore structure a little better, the data of Fig., 18

are replotted from the frame of reference moving to the right with a speed
b3y /gho. Plotted are the initial profile, and every fourth profile of

Tiz. 18, This corresponds %o times of 46, 93, 129, 1R85, 231 and 278, The
qualitative features correspond closely to calculations using the Yorteweg-

deVries EZquation (see Peregrine, 1966 and Vliegenthart, 1971). For example,

t

o2

e line connecting particular crests near the front is nearly straight, its
slope decreasing as time increases., TFavre's experimen®s at early times smw
the same hehavior. At late times, however, Tavre's dAata show "saturation',
the lead faw waves having *he same amplitude, nnly the waves further back
showing the evolving sloning line. Thus, the results of the ccmputations
Zlven here do not model this Teature of the experiment any %“etter than do
other theories.

In an attempt to better model the experiments, some dissipation was
added. The form of model dissipation is that of the trapezoidal correction
af the hasic leapfrzg method, verformed at each time step. Tigur2 20 shows
the resilts for the same conditions as in
damped picture of Fig. 19, i.e., the waves are smaller, but the overall

envalopes of the profiles are gqualitatively the zame. It is “rue that “hare

ara differences in the model 1iiszipation and the lahoratory dissipation.
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Jevertheless, it is likely <that the difference between experiment and theory
is due to something other than dissipation, perhaps surface tension, T™is
contrasts with the case treated in the last subsection, where the
experiments definitely favor this theory over a ¥Yorteweg-deVries theory.
6. Discussion
The end result of the work reported here is a new model of water waves
that can descrite a wide variety of propagtion situations accurately and
efficiently. The following factors are responsihle for this develomment:
l. The model uses exact prognostic equations in conservation form,
Tas. (2.4) and (2.5). A very general derivation of [2.5) is given in
Witting and McDonald {(19f2)., To my knowledge it has not heen used in wave
modeling before now.

Higher order expansions than used before connect the velocity

variables that appear in the governing equations. ™is allows the model a)

to incorporate long wave theory exactly, b) to give a good representation of

wvaves all the way out to kho exceeding 8, thus including both shallow

water and essentially deep water waves in the same model, and c¢c) to

represent fairly-long nonlinear waves to one order betiter than Boussinesq.
3+  The model employs a numerical method, i.e, pure leapfrog, that

gives no unwanted numerical diffusion. The time-stepping procedures are

simple enough to analyze in some detail and to irplement efficiently on

vector computers.
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L. Te model takes a time step equal to a space step (in
nondimensional units for which the linear long wave speed is unity), ™is
allows for efficient machine computations, unlike methods developed for the
Korteweg-deVries Fquation. Moreover, this procedure removes any spurious
numerical dispersion at order k2(Ax)2.

5. Finally, the diagnostic equations are cast in a form such that only
tri-iiagonal matrix 2quations need to te solved. A very fast, filly
vectorized algorithm is then used to invert the mairices.

Running times for the waves model on the TI-ASCLT corputer are
approximtely 20 msec per time step for a computational region containing
1600 grid points. A run to t = 150 with resolution &x = At = 1/9 takes
about 2k sez. About half of the running time is spent in collecting
liagnostic information and can be eliminated, i€ desired. In summarr,
computer costs to run the model are very small.

Mo detailed corparisons have been made with other numerical models for
specific problems. In general, though, it is clear from Figs. (2-f) that
the model is considerably more accurate than Boussinesqg models, and can deal
with higher and shorter waves., The “lexibility of the model %o treat
different physical conditions is illustrated by Figs. [7-20) with
accempanying t=xt. Consequently, the model represents a great improvenent
over cther expansion-type models. Fxcept for breaking waves ard nther
extreme situations that it cannot reach, the unified waves model can trest
the same probiems that non-expansion-type rodels, such as 'agrangian and
Marker-in—cell models, can trea%, at a tiny fractinn of the cost. In
rractice, these more complicated models cann»® erploy a resolution fine

enough to cormpete with the new waves model.
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